

Design Charts for Shielded Dielectric Rod and Ring Resonators

Yoshio KOBAYASHI and Satoshi NAKAYAMA

Department of Electrical Engineering
Saitama University
Urawa, Saitama 338, Japan

ABSTRACT

Some useful charts are presented to design precisely dielectric rod and ring resonators placed symmetrically in conductor cavities. When a resonant frequency of the $TE_{01\delta}$ mode and necessary material constants are given, the optimum dimensions for offering the best separation from other resonances, the frequency-temperature coefficient, and the unloaded Q can be determined from these charts.

INTRODUCTION

For dielectric rod resonators placed in conductor shields, the lowest order mode $TE_{01\delta}$ is used commonly because it has the highest Q value in all resonant modes. But, other resonances exist rather closely to this mode and cause the poor spurious responses in dielectric resonator filters [1], [2]. This drawback is fairly improved by using a dielectric ring instead of a rod [3]. The optimum design of these resonators is performed to offer the best separation from other resonances in the case of the relative permittivity ϵ_r of 37.5 [4]. In addition, various types of temperature-stable, low loss ceramics having $\epsilon_r=20$ to 100 are developed as resonator materials. A significant feature of these ceramics is that the loss tangent $\tan \delta$ increases with increasing ϵ_r as well as the frequency; so the lower ϵ_r is suitable for the realization of the proper size and high-Q at the millimeter wave, while the higher ϵ_r suits at the lower microwave frequency. In the design of these resonators, therefore, it is essential to know the behavior of the resonant modes in the broad range of ϵ_r .

This paper investigates the resonant properties of dielectric rod and ring resonators placed symmetrically in conductor cavities. The rigorous analysis can be made by the mode matching technique [4]-[6]. Since the computation is tedious, however, the computed results are given as functions of ϵ_r in some design charts. Giving a resonant frequency of the $TE_{01\delta}$ mode and necessary material constants, we can determine the optimum dimensions for offering the best separation from other resonances, the frequency-temperature coefficient, and the unloaded Q from these charts. The resonant properties of some high-Q dielectric resonators are discussed.

ANALYSIS

A shielded dielectric ring resonator analyzed

is shown in Fig. 1. A dielectric ring having relative permittivity ϵ_r , diameter D, inner diameter D_x , and length L is placed symmetrically in a cylindrical conductor cavity having diameter d and height h. We put $D_x=0$ for rod shape. The rigorous analysis of any resonant mode can be performed by the mode matching technique [4]-[6]; that is, the resonant frequencies are computed from the condition that the following determinant vanishes:

$$\det H(f; \epsilon_r, D, X, G, S, S_x) = 0 \quad (1)$$

where $X=(D/L)^2$, $G=M/D=(h-L)/2D$, $S=d/D$, and $S_x=D_x/D$. The matrix elements are omitted here.

The temperature coefficients of the resonant frequencies will be expressed as shown below. Let a small change of any quantity x be Δx . For any mode of the ring resonator, a small change of the resonant frequency Δf_0 is given by

$$\frac{\Delta f_0}{f_0} = A_r \frac{\Delta \epsilon_r}{\epsilon_r} + A_D \frac{\Delta D}{D} + A_x \frac{\Delta D_x}{D_x} + A_L \frac{\Delta L}{L} + A_d \frac{\Delta d}{d} + A_h \frac{\Delta h}{h} \quad (2)$$

where

$$\begin{aligned} A_r &= \frac{\epsilon_r}{f_0} \frac{\partial f_0}{\partial \epsilon_r} & A_D &= \frac{D}{f_0} \frac{\partial f_0}{\partial D} & A_x &= \frac{D_x}{f_0} \frac{\partial f_0}{\partial D_x} \\ A_L &= \frac{L}{f_0} \frac{\partial f_0}{\partial L} & A_d &= \frac{d}{f_0} \frac{\partial f_0}{\partial d} & A_h &= \frac{h}{f_0} \frac{\partial f_0}{\partial h}. \end{aligned} \quad (3)$$

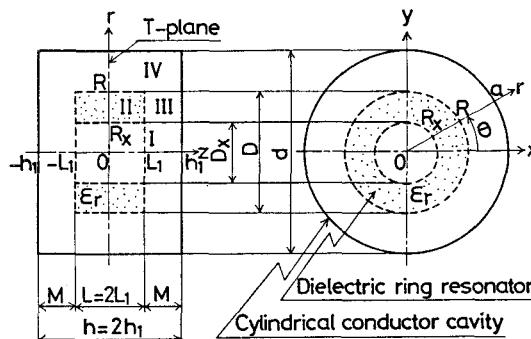


Fig. 1. Configuration of a dielectric ring resonator.

An actual value of the constant A_r can be accurately computed from (1) by approximating $\partial f_0 / \partial \epsilon_r$ by $\Delta f_0 / \Delta \epsilon_r$; the other constants A_D , A_x ($A_x = 0$ for the rod), A_L , A_d and A_h can be obtained similarly. Furthermore, if these small changes are caused by the temperature change ΔT °C of the structure, the following expression can be derived from (2):

$$\tau_f = A_r \tau_r + A_\alpha \tau_\alpha + A_c \tau_c \quad (4)$$

where

$$A_\alpha = A_D + A_x + A_L \quad A_c = A_d + A_h$$

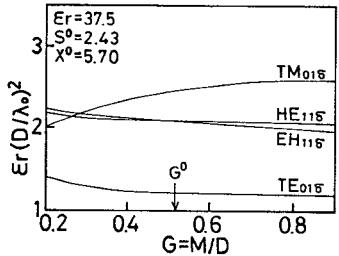
$$\tau_f = \frac{\Delta f_0}{f_0 \Delta T} \quad \tau_r = \frac{\Delta \epsilon_r}{\epsilon_r \Delta T} \quad (5)$$

$$\tau_\alpha = \frac{\Delta D}{D \Delta T} = \frac{\Delta D_x}{D_x \Delta T} = \frac{\Delta L}{L \Delta T} \quad \tau_c = \frac{\Delta d}{d \Delta T} = \frac{\Delta h}{h \Delta T}.$$

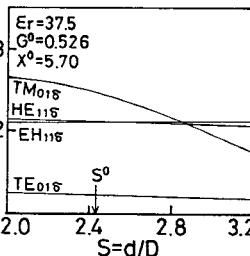
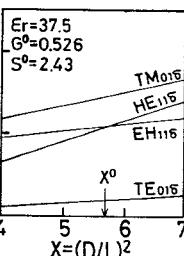
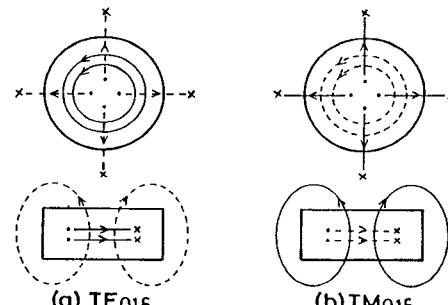
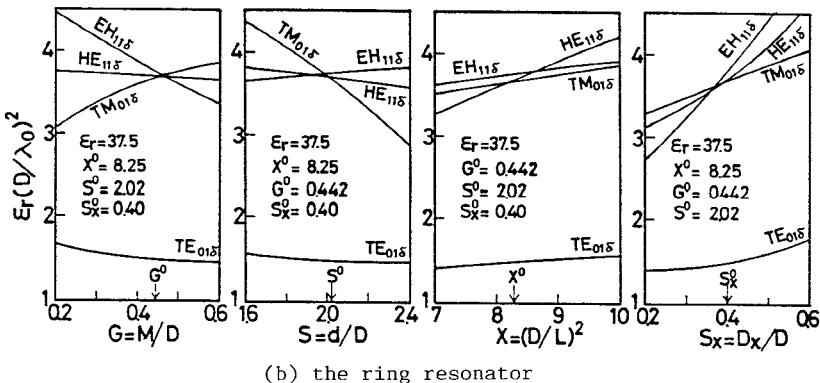
Also τ_f and τ_r are the temperature coefficients of f_0 and ϵ_r , and τ_α and τ_c are the coefficients of the thermal linear expansion of the dielectric and conductor, respectively.

The unloaded Q , Q_u of the $TE_{01\delta}$ mode can be derived by the perturbations of cavity walls and of cavity material [7]; that is,

$$Q_u = \left(\frac{1}{Q_d} + \frac{1}{Q_c} \right)^{-1}, \quad Q_c = \left(\frac{1}{Q_{cy}} + \frac{1}{Q_{ce}} \right)^{-1} \quad (6)$$



(a) the rod resonator



(b) the ring resonator

Fig. 2. Mode charts of dielectric rod and ring resonators around the optimum dimension ratios in the case of $\epsilon_r = 37.5$.

where

$$Q_d = \frac{-1}{2A_r} \frac{1}{\tan \delta} \quad Q_{cy} = \frac{-1}{2A_d} \frac{d}{\delta} \quad Q_{ce} = \frac{-1}{2A_h} \frac{h}{\delta} \quad (7)$$

and

$$\delta_s = (\pi f_0 \mu \bar{\sigma} \sigma_0)^{-1/2}, \quad \bar{\sigma} = \sigma / \sigma_0, \quad \sigma_0 = 58 \times 10^6 \text{ [S/m].} \quad (8)$$

Also, Q_d and Q_c are ones due to the dielectric and conductor losses, and Q_{cy} and Q_{ce} are ones due to the conductor losses of the cylinder and end plates, respectively. $\tan \delta$ is the loss tangent of dielectric, δ is the skin depth of conductor, σ is the conductivity, $\bar{\sigma}$ is the relative conductivity, and σ_0 is the conductivity of the international standard annealed copper.

DESIGN CHARTS

Define the frequency ratio F_r by $F_r = f_r / f_0$, where f_0 and f_r are the resonant frequencies of the $TE_{01\delta}$ mode and of the next higher-order modes, respectively. When ϵ_r is given, the optimum dimension ratios X^0 , G^0 , S^0 , and S_x^0 ($S_x^0 = 0$ for the rod) can be determined from (1) to obtain the maximum value of F_r , $F_{r\max}$ [4]. Fig. 2 shows mode charts of the $TE_{01\delta}$ rod resonator and ring resonators around these optimum dimension ratios in the case of $\epsilon_r = 37.5$. The behavior of the higher-order modes can be specified from these charts. For convenience, the field plots of the principal modes for the rod resonator is shown in Fig. 3 [5].

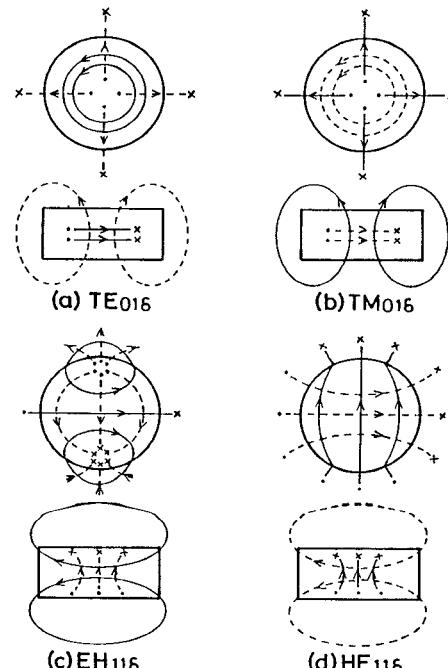


Fig. 3. Field plots of the principal modes for the rod resonator. (— E, - - H)

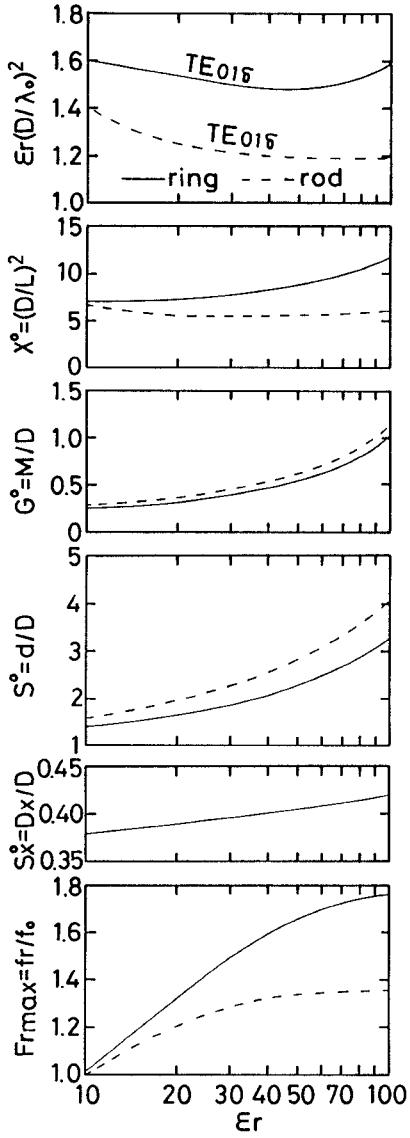


Fig. 4. Design charts to obtain the resonant frequency of $TE_{01\delta}$ mode, the optimum dimensions, and the F_{rmax} value.

Fig. 4 shows design charts obtained from the optimum values computed in the cases of $\epsilon_r = 10, 21, 37.5$, and 100 . Here, the solid and dashed lines indicate the cases of the ring and rod resonators, respectively. The difference between the F_{rmax} values for the rod and ring increases with ϵ_r ; it is saturated near $\epsilon_r = 100$. On the other hand, as ϵ_r decreases to 10, the $TE_{01\delta}$ mode for the rod is no longer the lowest-order mode in any dimension; even for the ring, F_{rmax} is only 1.04.

To calculate τ_f , the constants given in (3) and (5) were computed at the optimum dimensions. These results are shown in Fig. 5. Furthermore, to calculate Q_u , the results computed using (7) are shown in Fig. 6.

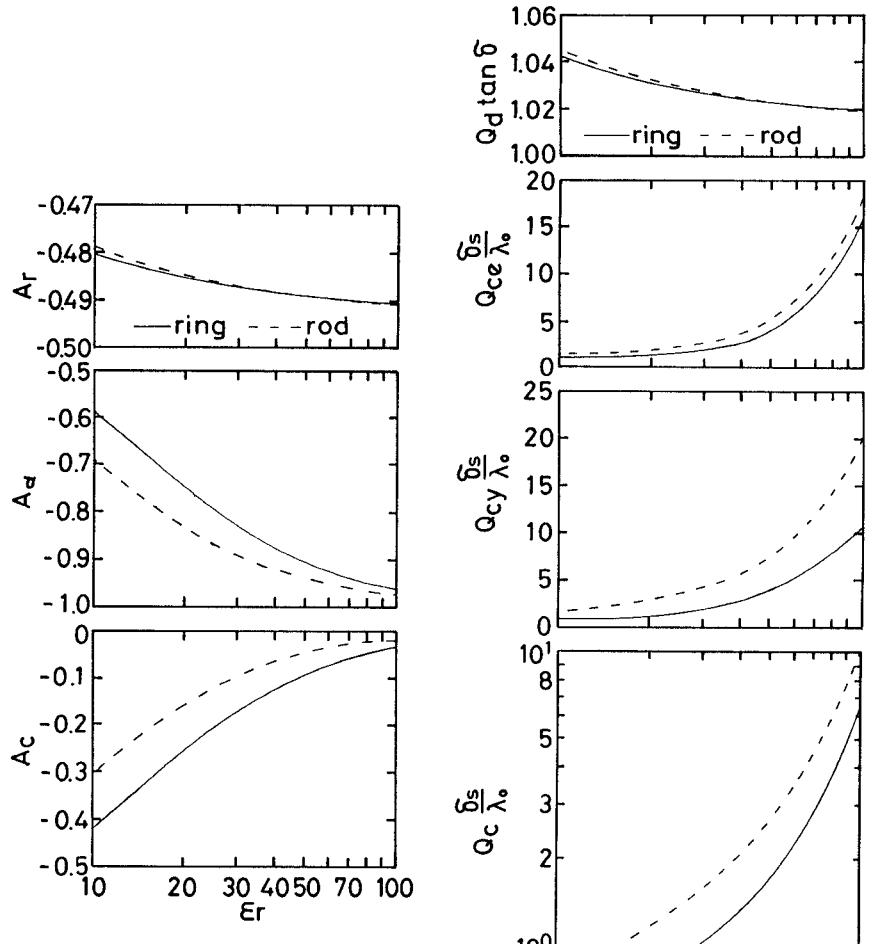


Fig. 5. Design charts to obtain τ_f at the optimum dimension ratios.

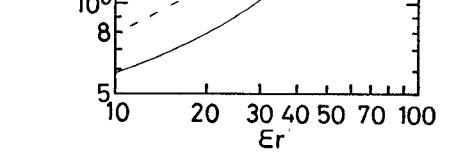


Fig. 6. Design charts to obtain Q_u at the optimum dimension ratios.

DISCUSSIONS

The resonant properties are discussed for three $TE_{01\delta}$ rod resonators fabricated from copper-plated brass cavities ($\delta = 90\%$) and the following new low-loss BMT ceramics:

- (1) $Ba(MgZrTaNb)_3$ (Ube Industries, Ltd.)
- (2) $Ba(SnMgTa)_3$ (Murata Mfg. Co. Ltd.)
- (3) $Ba_3MgTa_2O_9$ (Sumitomo Metal Mining Co. Ltd.)

The material constants ϵ_r , $\tan \delta$, and τ_r of these ceramics were measured by the dielectric rod resonator method [8]. Also, τ_c for the brass cavity was obtained from the measurement of temperature dependence on the resonant frequency of the TE_{011} mode. Then, giving ϵ_r and f_0 , we get D , L , d , h , and F_{rmax} from Fig. 4; giving τ_r , τ_α , and τ_c , we get τ_f from Fig. 5; giving $\tan \delta$ and σ , we get

Table 1. Calculated values for three TE_{01δ} dielectric rod resonators.

No. Ceramics	No. 1 Ba(MgZr _x TaNb) ₃ O ₉	No. 2 Ba(SnMgTa)O ₃	No. 3 Ba ₃ MgTa ₂ O ₉
ε _r f ₀ (GHz)	27.0 6.34	24.4 9.20	24.0 11.20
D (mm)	10.05	7.32	6.06
L (mm)	4.29	3.12	2.58
d (mm)	22.11	15.37	12.73
h (mm)	12.73	8.86	7.34
F _{rmax}	1.28	1.25	1.25
τ _r (ppm/°C)	-23.8±1.0	-23.6±1.4	-26.2±2.8
τ _α (ppm/°C)	10.0±0.5	10.0±0.5	7.0±1.0
τ _c (ppm/°C)	20.12	20.12	20.12
τ _f (ppm/°C)	0.4±0.7	0.1±0.8	3.9±1.6
tan δ × 10 ⁵	3.6±0.4	3.7±0.4	3.8±0.4
Q _d	28600	27800	27100
Q _c	* 75700	56700	51400
Q _u	20800	18700	17700

* Calculated values for δ=90 %

Q_u from Fig. 6. These calculated results are summarized in Table 1.

Consider the No. 1 resonator to discuss the temperature stability of the resonant frequency. In this case, τ_f is given by

$$\tau_f = -0.486\tau_r - 0.880\tau_\alpha - 0.119\tau_c. \quad (9)$$

In (9), the effect of τ_c on τ_f is only -2.4 ppm/°C even if τ_c=20 ppm/°C, because it is weakened due to the effect of energy concentration in the dielectric; while it is -20 ppm/°C for an empty cavity. Thus, temperature stable resonators are realized by offsetting the effects of both the temperature dependence of ε_r and the thermal expansion of dielectric and conductor; that is, τ_f should be negative since τ_α and τ_c are positive.

Furthermore, it follows that Q_u≈1/tan δ when tan δ > 10⁻⁴, because Q_u is much higher than Q_d; however, both Q_d and Q_c should be considered in the Q_u estimation when tan δ < 10⁻⁴ [5].

The measured results for the No. 1 resonator were f₀=6.341 GHz, F_{rmax}=1.27, τ_f=0.2±0.2 ppm/°C, and Q_u=21000±2000. They agree well with the calculated values in Table 1. Thus, validity of these charts is confirmed.

At 48 GHz, three resonators were constructed using the same Nos. 1, 2, and 3 ceramics as shown above. The resonator dimensions are D≈1.37 mm, L≈0.6 mm, d≈3.1 mm, and h≈1.7 mm. The measured Q_u values are 4100, 4300, and 4500, respectively. They are comparable to ones for conductor cavities. In addition to this, their temperature properties are much better than ones for the cavities. Thus, these ceramics also have great capabilities of being used in the millimeter wave circuits.

CONCLUSION

It was shown that some charts presented are available for designing precisely shielded dielectric rod and ring resonators. The resonant properties were discussed for TE_{01δ} dielectric rod resonators fabricated using new low-loss BMT ceramics at 6, 9, 12, and 48 GHz. From these results, it is concluded that these ceramics have capability of realizing compact, temperature-stable resonators having high unloaded Q values comparable to ones for conventional conductor cavities.

REFERENCES

- [1] S. B. Cohn, "Microwave bandpass filters containing high-Q dielectric resonators," IEEE Trans. Microwave Theory Tech., vol. MTT-16, pp. 218-227, Apr. 1968.
- [2] Y. Kobayashi and S. Yoshida, "Design of bandpass filter using axially-coupled dielectric rod resonators," Trans. IECE Japan, vol. J66-B, pp. 95-102, Jan. 1983.
- [3] K. Wakino, T. Nishikawa, S. Tamura, and Y. Ishikawa, "Microwave bandpass filters containing dielectric resonators with improved temperature stability and spurious response," 1975 IEEE MTT-S Int. Microwave Symp. Dig., pp. 63-65.
- [4] Y. Kobayashi and M. Miura, "Optimum design of shielded dielectric rod and ring resonators for obtaining the best mode separation," 1984 IEEE MTT-S Int. Microwave Symp. Dig., no. 7-11, pp. 184-186.
- [5] Y. Kobayashi, N. Fukuoka, and S. Yoshida, "Resonant modes for a shielded dielectric rod resonator," Trans. IECE Japan, vol. J64-B, pp. 433-440, May 1981. (Translated in English, Electronics and Communications in Japan, vol. 64-B, pp. 44-51, Nov. 1981.)
- [6] K. A. Zaki and A. E. Atia, "Modes in dielectric loaded waveguides and resonators," IEEE Trans. Microwave Theory Tech., vol. MTT-31, pp. 1039-1045, Dec. 1983.
- [7] Y. Kobayashi, T. Aoki, and Y. Kabe, "Influence of conductor shields on the Q-factors of a TE₀₀ dielectric resonator," IEEE Trans. Microwave Theory Tech., vol. MTT-33, pp. 1361-1366, Dec. 1985. Also, 1985 IEEE MTT-S Int. Microwave Symp. Dig., no. K-3, pp. 281-284.
- [8] Y. Kobayashi and M. Katoh, "Microwave measurement of dielectric properties of low loss materials by dielectric rod resonator method," IEEE Trans., Microwave Theory Tech., vol. MTT-33, pp. 586-592, July 1985.